extension | φ:Q→Aut N | d | ρ | Label | ID |
C32:1(C3xC4oD4) = C62.36D6 | φ: C3xC4oD4/C2xC4 → C6 ⊆ Aut C32 | 72 | 6 | C3^2:1(C3xC4oD4) | 432,351 |
C32:2(C3xC4oD4) = C62.13D6 | φ: C3xC4oD4/D4 → C6 ⊆ Aut C32 | 72 | 12- | C3^2:2(C3xC4oD4) | 432,361 |
C32:3(C3xC4oD4) = (Q8xHe3):C2 | φ: C3xC4oD4/Q8 → C6 ⊆ Aut C32 | 72 | 12+ | C3^2:3(C3xC4oD4) | 432,369 |
C32:4(C3xC4oD4) = C3xD12:5S3 | φ: C3xC4oD4/C12 → C22 ⊆ Aut C32 | 48 | 4 | C3^2:4(C3xC4oD4) | 432,643 |
C32:5(C3xC4oD4) = C3xD12:S3 | φ: C3xC4oD4/C12 → C22 ⊆ Aut C32 | 48 | 4 | C3^2:5(C3xC4oD4) | 432,644 |
C32:6(C3xC4oD4) = C3xD6.D6 | φ: C3xC4oD4/C12 → C22 ⊆ Aut C32 | 48 | 4 | C3^2:6(C3xC4oD4) | 432,646 |
C32:7(C3xC4oD4) = C3xD6.6D6 | φ: C3xC4oD4/C12 → C22 ⊆ Aut C32 | 48 | 4 | C3^2:7(C3xC4oD4) | 432,647 |
C32:8(C3xC4oD4) = C3xD6.3D6 | φ: C3xC4oD4/C2xC6 → C22 ⊆ Aut C32 | 24 | 4 | C3^2:8(C3xC4oD4) | 432,652 |
C32:9(C3xC4oD4) = C3xD6.4D6 | φ: C3xC4oD4/C2xC6 → C22 ⊆ Aut C32 | 24 | 4 | C3^2:9(C3xC4oD4) | 432,653 |
C32:10(C3xC4oD4) = C4oD4xHe3 | φ: C3xC4oD4/C4oD4 → C3 ⊆ Aut C32 | 72 | 6 | C3^2:10(C3xC4oD4) | 432,410 |
C32:11(C3xC4oD4) = C32xC4oD12 | φ: C3xC4oD4/C2xC12 → C2 ⊆ Aut C32 | 72 | | C3^2:11(C3xC4oD4) | 432,703 |
C32:12(C3xC4oD4) = C3xC12.59D6 | φ: C3xC4oD4/C2xC12 → C2 ⊆ Aut C32 | 72 | | C3^2:12(C3xC4oD4) | 432,713 |
C32:13(C3xC4oD4) = C32xD4:2S3 | φ: C3xC4oD4/C3xD4 → C2 ⊆ Aut C32 | 72 | | C3^2:13(C3xC4oD4) | 432,705 |
C32:14(C3xC4oD4) = C3xC12.D6 | φ: C3xC4oD4/C3xD4 → C2 ⊆ Aut C32 | 72 | | C3^2:14(C3xC4oD4) | 432,715 |
C32:15(C3xC4oD4) = C32xQ8:3S3 | φ: C3xC4oD4/C3xQ8 → C2 ⊆ Aut C32 | 144 | | C3^2:15(C3xC4oD4) | 432,707 |
C32:16(C3xC4oD4) = C3xC12.26D6 | φ: C3xC4oD4/C3xQ8 → C2 ⊆ Aut C32 | 144 | | C3^2:16(C3xC4oD4) | 432,717 |